The Performance Analysis of Web Service Composition Based on Timed Colored Petri Net

Baojun Tian
College of Information, Inner Mongolia University of Technology, Hohhot, China
ngdtbj@126.com

Abstract—On the premise of meeting functional requirements, the performance of web service composition is key to customers. Therefore, performance modeling of web service composition has been an important research direction of reengineering. Time coloured Petri net (TCPN) can not only establish a simulation model for system behaviour, but also extract or collect many performance analysis results from the model combined with predefined data monitors, which can satisfy user demands for the performance of QOS, and solve the problems which stochastic process algebra and queue network suffer when analyzing system performance.

Index Terms —TCPN, modeling, performance analysis

I. INTRODUCTION

With the continuous development of computer technology, constructing the loosely coupled collaborative software system, which can flexibly integrates program or legacy system distributing in heterogeneous environment, has become an important research field of software engineering. Service oriented computing (SOC) appear in order to solve above problems. And web service has become one of the most important computing resources on the Internet. Meanwhile, along with the its combination standards and technology continuing to develop, web service has been the core technology of SOC[2].

Web service is based on the Internet and independent on development environment. As long as following web service architecture, they can be integrated and called by each other.

Web service has the following characteristics.
• Good encapsulation
To the users, it can only see the list of functions provided by web service.
• Loosely coupled
For the enterprise application, web service provides a loosely coupled and distributed computing environment which is independent on any platform and language.
• Standard protocols
Web service’s functions are described by the standard WSDL. Communication protocols between services uses SOAP. And web service agent center uses the universal description, discovery and integration protocol UDDI.

According to application requirements, web service composition may consist of many autonomous web services, thus it may provide new, more powerful and value-added functions.

The methods of web services composition are parted into following categories.
• Web service composition based on business processes.
• Web service composition based on workflow.
• Web service composition based on formal method.

The working pattern of web service composition is similar as workflow, such as, Business Process Execution Language for Web Services(BPEL4WS), Business Process Modeling Language(BPML) and W3C’s Web Services Choreography Definition Language(WS-CDL).

• Web service composition based on formal method.

This approach utilizes mathematics model and formal tools to describe web service composition. Petri net is a formal model of concurrency. Process algebra is formal language, which can describe and reason process behaviour. Famous process algebra includes Milner’s Calculus of Communication System(CCS), Hoare’s Calculus of Sequential Process(CSP) and Pi calculus etc[8][9].

• Web service composition based on artificial intelligence[1].

This method mainly uses planning algorithm of artificial intelligence for web service composition[12].
• Hierarchical Task Network(HTN) planning
It uses OWL-S as a web service description language, and form a composition service through the method of task decomposition.
• Situation Calculus
It belongs to the first-order logic language programming method. And it is the formal predicate calculus of state, action and state results.
• Rule-Based planning
Using the rules to determine whether two services can be combined.
• theorem proving method
It uses a linear logic (LL) method of theorem proving to achieve semantic web service composition.

On the premise of meeting functional requirements, the performance of service composition is important to a
system, which may reflect web service composition’s quality[6][11].

There are two main methods for performance evaluation of web service composition.

- method of experiment bed
 Experiment bed need build a real system, and it directly obtains performance indexes or parameters from monitoring procedures or instrument to predict the performance of a system through the statistical methods. Its main drawback is that construction of a real system would be expensive and cost more time.
- modeling method

The method analyzes the performance of a system by establishing its simulation model. It can not only analyze the performance of an existing system but also carry out performance prediction of a system that does not yet exist, at the same time which can find and correct the defects of design early. Using Pi calculus, queue network and Petri net, this research method mainly sets up simulation model evaluating system performances by means of qualitative and quantitative analysis[13].

The qualitative model mainly reflects logical structure and operation mechanism. It chiefly includes automaton, process communication process (CSP), communication calculus system (CCS), UML and Petri net etc. Quantitative model mainly describes the quantity indexes of system performance. It basically includes stochastic process algebra, queue theory and Markov processes, timed Petri nets and stochastic Petri net[15].

Pi calculus analyzes system performance basically by Markov chain, however, which cannot solve the problem of "state space explosion". Only if it has product solution, queue network does not exist "state space explosion" problem. But for the discrete-event queue model, it really has not the product solution, which is easy to appear "state space explosion"[10].

Similarly, stochastic Petri net has strong ability of describing model, but with the complexity increasing, there is still "state space explosion" problem[7].

Timed Colored Petri net combines Petri net, programming language and time together, which improves the abilities of processing data and time. At the same time, it introduces the concept of color of token, the constraints for the arcs and transitions, which can reduce the complexity of model. By these approaches, it effectively solves the "state space explosion" problem, and by powerful Petri net simulation tools it can directly extract and analyze experiment data from the model for performance analysis. Therefore, it is widely used in the performance analysis of a large and complex web service composition[4][16].

The basic performance indexes of web service composition mainly include the followings.
- response delay
 It is the time interval between request sent by user and obtaining service.
- response time
 It is the time interval between a request of web service composition sent by user and the response received by user.

It is the time interval between a request of web service composition sent by user and the response received by user.

- response per second
 In the non-idle state(i.e., the load of web service composition is not zero), it is the numbers that web service composition responds to the request per second.
- system capacity
 In the non-idle state, it is the maximum number of web service composition responds to the request per second, i.e., the maximum of response per second.
- system bandwidth
 A web service composition can transmit the number of bytes per second.
- maximum stable connections
 When the performance is relatively stable and there is no obvious decline, a web service composition can support the maximal number of simultaneous connections.

II. RELATED THEORY KNOWLEDGE

A. Formal Definition of TCPN

Timed Colored Petri net that is based on classical Petri net introduces two parameters, i.e., color and time respectively. By color concept, different kinds of data can be imported. And with time parameter, the delay in web service composition is simulated[3][5].

A TCPN is seven tuples TCPN=(P, T, F, C, G, A, Dt) satisfying the requirements below [14].

- (P, T, F) is a basic net.
- C is a colour set that is finite set of non-empty,
 \(\forall p \in P, C(p) \) is a token color set of place p,
 \(\forall t \in T, C(t) \) is a token color set of transition t.
- A is an arc expression function.
- G is a guard function. It is defined from T into expression such that.
 \(\forall t \in T. Type(G(t))=\text{Boolean} \lor G(t)=\text{null} \land Type(G(t))=\text{true} \).
- Dt is time delay function. It can be defined in an arc and also be defined in a transition.

B. Dynamic Properties of Time Coloured Petri Net

When modeled by a TCPN, web service composition is analyzed and verified by dynamic properties.

- Reachability Property
 Definition 1. Let (TCPN,\(M_0 \)) time Coloured Petri Net, fire sequence \(\sigma=t_1t_2...t_n \), the sequence of states and transitions \(M_0t_1M_1t_2...t_nM_n \) and from (TCPN,\(M_0 \)) a set of all possible fire sequence \(L(TCPN,M_0) \) or \(L(M_0) \) be given.

 Using fire sequence \(\sigma \), the state \(M_n \) is reachable from \(M_0 \), i.e., \(M_0[\sigma]\Rightarrow M_n \), if:
 \[\sigma=t_1t_2...t_n \in L(M_0) \] and \(M_0t_1M_1t_2...t_nM_n \) exists.

 And all reachable states from \(M_0 \) are labeled as \(R(PN,M_0) \) or \(R(M_0) \).

- Boundedness Property
Definition 2. \((TCPN,M_0)\) is k-Boundedness\((k \in \mathbb{N})\) if:
\[
\forall p, M \in R(M_0), M(p) \leq k.
\]

- Liveness Property

Definition 3. \((TCPN,M_0)\) is live, there is no transitions that cannot fire by proper transition sequence. i.e., iff:
\[
\forall M \in R(M_0) : \exists \sigma = t_1 t_2 \ldots t_n \in L(M_0), \forall t_i \text{ is fired}.
\]

- Home Property

Definition 4. Let a marking \(M \in R(M_0)\) be given. M is a home marking, iff:
\[
\forall M' \in R(M_0) : M \in [M'].
\]

- Coverability Property

Definition 5. Let a marking \(M \in R(M_0)\) be given. M is a coverability marking, iff:
\[
\exists M' \in R(M_0) : \forall p \in P, M(p) \leq M'(p).
\]

C. The structure of TCPN for Web Service Composition

- sequence activity
 <sequence>
 activityA
 activityB
 </sequence>

- if activity
 <if>
 <condition>
 condition
 </condition>
 activityA
 </if>
 activityB
 </if>

- while activity
 <while>
 <condition>
 condition
 </condition>
 activityA
 </while>

- switch activity
 <switch>
 <case condition="Bool-expr"> activityA </case>
 <otherwise> activityB </otherwise>
 </switch>

- pick activity
 <pick>
 <onMessage...> activityA </onMessage...>
 <onMessage...> activityB </onMessage...>
 </pick>

- flow activity
 <flow>
 activityA
 activityB
 </flow>
• forEach activity
<forEach parallel="yes|no" counterName="N" …>
<startCounterValue>1</startCounterValue>
<finalCounterValue>n</finalCounterValue>
<scope>
…… activity
</scope>
</forEach>

Figure 7. for Each activity (parallel="yes").

Figure 8. for Each activity (parallel="no").

III. AN INSTANCE OF PERFORMANCE ANALYSIS

In this paper, a hospital outpatient management system (a web service composition)modeled by TCPN as an example illustrates the performance analysis of web service composition. It includes two web services, i.e., registering service and diagnosing service.

The web service composition is described by TCPN in figure 10. The colour sets, variables and data monitors are defined by CPN ML as follows.

Declaration of colour sets, variables.
- colset INT=int;
- colset SUM=with s;
- colset IntT=with INT*T;
- colset Patient=with patient;
- colset PatientsCard=product Patient*Card;
- colset E=with E timed;
- colset STRING=string;
- var numofDoc.INT;
- fun intTime()=IntInf.toInt(time());
- fun round x=floor(x+0.5);
- fun disExp x=round(expone(x));
Definition of data collector monitor.

Time Delay

<table>
<thead>
<tr>
<th>Name</th>
<th>Count</th>
<th>Avg</th>
<th>95% Half Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marking_size_TCPN_Waiting_Diagnosis_1</td>
<td>69</td>
<td>0.41670 3</td>
<td>0.2500 04</td>
</tr>
<tr>
<td>Time_Delay</td>
<td>33</td>
<td>0.49440 4</td>
<td>0.3584 52</td>
</tr>
</tbody>
</table>

References

Associate professor Baojun Tian. 2000-2003, Master Degree in Computer Application Technology, Department of Computer Science, Inner Mongolia University, China. 1992-1996, Bachelor Degree in Mathematics, Department of Mathematics Science, Inner Mongolia University, China. His major fields of study are software engineering, formal modeling and web service composition.