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Abstract—Parallel Particle Swarm Optimization (PPSO) 
algorithm is proposed to optimize the reference stations 
distribution and this algorithm will increase the User 
Differential Range Error (UDRE) accuracy and enhance the 
flight safety. Due to the reference stations distribution 
largely influence the accuracy of UDRE, a concept of 
Satellite Surveillance Dilution of Precision (SSDOP) is used 
to reflect the effect of changing the reference stations 
distribution on UDRE. After analyzing the expressions of 
SSDOP and UDRE, UDRE is influenced by restriction 
factor and SSDOP when measurement noise is a certain 
value, and the restriction factor is independent on SSDOP. 
Then, a mathematical equation between SSDOP and UDRE 
is deduced from the SSDOP and UDRE expressions, and a 
linear trend is showed. A Particle Swarm Optimization 
(PSO) algorithm is proposed, and it first randomly 
generates a group of particles and each particle represents a 
reference stations distribution. The average SSDOP is used 
as the fitness function to evaluate each particle. Both the 
local best and global best are used to guide the search 
direction. However, the proposed PSO algorithm may 
converge too fast which makes the optimizing result to 
become the local optimization. Thus, the PPSO algorithm 
with parallel computing is proposed to overcome this 
problem. Experiments are made to compare the 
performance of the proposed PPSO algorithm, the proposed 
PSO algorithm, “N-Angled” method and Exhaustive Grid 
Search method. The proposed PPSO algorithm can find the 
best solution without falling in local optimization, and isn’t 
restricted by the state and amount of the satellites and the 
outline of the searching area. 
 
Index Terms—UDRE, reference stations distribution, 
SSDOP, PSO, parallel computing, flight safety 
 

I.  INTRODUCTION  

As the fast development of aviation industry, flight 
safety becomes more and more important. Flight 
accidents are the results of multi-factors, such as poor 
positioning accuracy without warning. Satellite Based 
Augmentation System (SBAS), however, can improve 
flight safety by providing satellites’ integrity and 
correction data to SBAS flight users.  

Integrity data (such as User Differential Range Error, 
UDRE) is used to calculate Horizontal Protection Level 

(HPL) or/and Vertical Protection Level (VPL) which are 
the reflection of the Horizontal Protection Error (HPE) 
and Vertical Protection Error (VPE) representing the 
positioning accuracy. The user receiver compares the 
protection levels with the alert limits. If one of the 
protection levels exceeds the corresponding alert limit, 
the receiver provides an annunciation to the pilot [1]. 
Thus, UDRE makes a preeminent contribution to the 
safety of flight.  

The reference stations collect measurements from the 
Global Positioning System (GPS) and SBAS satellites to 
determine UDRE and correction data. The distribution of 
the reference stations network, therefore, has a great 
impact on the accuracy of UDRE. Accordingly, how to 
find a good reference stations distribution becomes the 
most important thing.  

In this paper, a conception of Satellite Surveillance 
Dilution of Precision (SSDOP) is proposed to reflect the 
impact on the satellite’s UDRE by changing the reference 
stations distribution. And according to the UDRE 
calculation method introduced below, UDRE is 
influenced by restriction factor and SSDOP when 
measurement noise is a certain value. Then, experiments 
are made to find that the restriction factor is independent 
on SSDOP but only influenced by the latitude and 
longitude of the satellite footprint. Thus, a mathematical 
equation relating SSDOP and UDRE is deduced where a 
linear trend is exhibited.  

Compared with UDRE, SSDOP is easier to calculate 
which only needs the unite vectors from the reference 
stations to the satellite. So the average SSDOP of 
satellites is chosen as the fitness function. Then, the 
proposed Particle Swarm Optimization (PSO) algorithm 
using average SSDOP as its fitness function is given to 
optimize the distribution of reference stations. However, 
there is a shortcoming of this proposed PSO algorithm. 
Sometimes, the proposed algorithm may converge too 
fast which makes the optimizing result to become the 
local optimization. Therefore, a Parallel Particle Swarm 
Optimization (PPSO) algorithm for optimizing 
distribution is proposed to solve this problem.  

Finally, experiments are made to compare the 
performance of  the PPSO method ,the proposed PSO 
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method and that of other methods. The correlative results 
indicate that the PPSO method is quite suitable for 
optimizing reference stations distribution in SBAS.  

II. RELATIONSHIP BETWEEN SSDOP AND UDRE 

SBAS is a combination of ground-based and space-
based equipments that augments the GPS. A network of 
ground reference stations with precisely surveyed GPS 
antennas is strategically positioned to collect GPS 
satellite data across the service volume. In each reference 
station, the code and carrier phase measurements are 
obtained by the dual frequency (cross-correlating) 

receivers and the pseudo-range residual error is calculated 
using the measurements. Then, the residual error of every 
reference station is sent to the master station where 
generates the ephemeris and clock corrections and UDRE. 

A. UDRE Algorithm 
According to [2], the reference stations’ observations 

are used as the inputs of Weighted Least Square (WLS) 
estimator to calculate the satellite ephemeris and clock 
corrections and variances. These outputs of the estimator, 
then, are used to calculate UDRE. The flow chart of 
UDRE is showed in Fig. 1.  
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Figure 1. The flow chart of UDRE 

To be specific, pseudo-range residual is computed by 
removing geometric range, satellite clock bias, 
ionospheric delay and tropospheric delay from the carrier 
smoothed pseudo-range. At this point, the pseudo-rang 
residual merely includes the ephemeris error, the satellite 
clock error and measurement noise as follow: 

j j j j j
i i iR l B vρ∆ = ∆ − ∆ +

KK
i   (1) 

where 
j

iρ∆ is the pseudo-range residual for the 
thj satellite at the 

thi reference station; 
jR∆
K

and 
jB∆  

,respectively, are the ephemeris error vector and the clock 

error of the 
thj satellite; 

j
il
K

is the unit line of sight vector 

from the reference station to the satellite and 
j

iv is the 
measurement noise which accounts for the error in carrier 
smoothing, ionospheric delay estimation and tropospheric 
delay estimation with a standard deviation of σ . 

To separate the satellite clock error from the 
ephemeris error, single differencing is needed. Although 

directly computing both 
jR∆
K

and 
jB∆ simultaneously is 

possible and the corrections can provide adequate 
integrity and availability for the users, doing so will let 
ephemeris and clock corrections be sent together and this 
will take up too much broadcast bandwidth. 

After single differencing, the satellite clock error is 
removed from the pseudo-range residual. The expression 
is as below: 

j
os os osH R Vρ∆ = ∆ +

K
   (2) 

where
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"
; osV is a noise matrix 

with a covariance matrix 
2

( 1) ( 1)2os M MA Iσ − × −=
; M is the 

number of reference stations that observe the 
thj satellite. 

Then, a WLS estimator is used to estimate ephemeris 
error from (2). The satellite ephemeris correction and its 
accuracy can be written as: 
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Derived from (1) and (3), the expression used to 
compute satellite clock correction is expressed as follow: 

j
c c oH B Vρ∆ = ∆ +    (5) 

where ,
ˆ j
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K
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covariance matrix of oV is
T

o o o o vA H P H A= + , 
2
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Just like the calculation of the satellite ephemeris 
correction, the clock correction is computed in a WLS 
estimator as well. The expressions of clock correction and 
its accuracy are as below: 

( ) 11 1ˆ j T T
c o c c o cB H A H H A P

−− −∆ = ∆
  (6) 

( )( )

11
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1112
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After attacking the computation of the correction data, 
the error vector after using ephemeris and clock 

corrections is 
ˆ ˆ[ ] [ ]j j j T j j TR B R Bε = ∆ ∆ − ∆ ∆

K KK
. 

Because of the calculation of the satellite ephemeris and 

clock corrections are apart, the 
ˆ jR∆
K

and ˆ jB∆ are 
independent on each other and the correlation coefficient 

between 
ˆ jR∆
K

and ˆ jB∆  is zero. Then, the covariance 

matrix of 
jεK  is expressed as below: 

0ˆ
0
o

c

P
P

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦    (8) 

The true value of 
jεK is unknown and the estimation of 

the correction data is mainly influenced by measurement 
noise, thus the covariance matrix for combined ephemeris 
and clock  error estimates are computed as follow: 
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where [ ] 4o c M
G H H

×
=

. 
Then, the UDRE is computed as follows: 

( )

2 1
( )

1
( ) ( ) ( )

UDRE UDRE

T T
o o o c c c

tr P
M

tr R tr H P H tr H P H
M

σ =

= + +� �
(10) 

where tr( ) is the trace of ( ). 

( )UDRE HMI UDREV Pκ σ= ⋅                        (11) 

where 
1( ) (1 / 2)HMI HMIK P Q P−= − , and Q is the 

cumulative distribution function of a Gaussian random 
variable with zero mean and unit variance. In this paper, 

HMIP =99.9% and ( )HMIK P =3.29. 

B. SSDOP Definition 
Geometric Dilution of Precision (GDOP) is used to 

describe the general relationship between the errors in the 
pseudorange measurements by the user to the user 

position accuracy [3]. Basing on GDOP, a concept of 
SSDOP is used to reflect the effect of changing the 
reference stations distribution on the accuracy of satellite 
ephemeris and clock estimates [6], then the expression of 
SSDOP is as follow: 

( )( )
1111

ˆ ( ) ( )( )
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(12) 

C. Impact of SSDOP on UDRE 
To establish the relationship between UDRE and 

SSDOP, (10) is changed into the following inequality. 

( )

( )

2 2

2

2

1
( )

1
( ) ( )

ˆ( )

T
UDRE o o o c

T
o o o c

M tr H P H MP
M

M tr H H tr P MP
M

tr P

σ σ

σ

σ

= + +

< + +

= +    (13) 

Derived from (11), (12) and (12), an inequality is 
given as follow: 

23.29 1UDRE SSDOPV Vσ< +
      (14) 

Defineα as restriction factor and its expression is as 
below: 

23.29 1

UDRE

SSDOP

V

V
α

σ
=

+
  (15) 

where 0 1α< < . 
Then, an equation about the UDRE and SSDOP is 

derived from (14) and (15). 

23.29 1UDRE SSDOPV Vα σ= +i
       (16) 

From (16), it is obvious that the value of UDRE is 
influenced by α and SSDOP when σ is a certain value. 
In order to express UDRE with SSDOP, the first thing is 
to find the factors that influence α . 

Equation (15) is used to analysis the α with 
MATLAB®. The simulation environment is as : a) 
simulation duration: 86400 seconds; b) simulation 
interval: 3 seconds; c) the number and the type of the 
satellite: 5 geostationary satellites (GEO), 3 inclined 
geosynchronous satellites (IGSO) and these IGSOs have 
the same nadir track, and 24 medium earth orbiting 
satellites (MEO); d) mask angle of the reference station: 
15°; e) the number of reference stations: 11, 27 and 36.  

Fig. 2 shows that under different distribution of the 
reference stations, the curves of α of IGSO3 are piled 
one atop others during the time the IGSO3 are observed 
by the reference stations. It is deduced that the change of 
α is independent on the distribution of the reference 
stations. 
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Figure 2. The curves of IGSO3’sα under different reference  

stations distribution 

Fig.3 shows that the curve of three IGSOs’ α  under 
27 reference stations. Although these three IGSOs have 
the same nadir track, they have different orbit parameters 
which make them to enter into the same orbit at different 
time, 71000s, 42000s and 13000s, respectively. When the 
IGSOs enter into the same orbit, the change of α shows 
the same trend. However, when the IGSO moves into 
different area, the α  is quite different. It is concluded 
that the change of α is influenced by the latitude and 
longitude of the satellite footprint. 

 
Figure 3. The curve of three IGSOs’α under 27  

reference stations 

Fig. 4 shows the curve of α changing with altitude in 
the geodetic coordinate. It is obvious that α is not 
influenced by the satellite altitude but only the longitude 
and latitude.  

After analyzing the MEOs and GEOs, the same 
conclusion is got. The α is independent on the 
distribution of reference stations, SSDOP and the altitude 
of the satellite, just influenced by the longitude and 
latitude of the satellite footprint in the geodetic 
coordinate. Thus, the α can be written as 

( ),fα λ ϕ=
          (17) 

where λ and ϕ are the longitude and latitude of the 
satellite footprint in the geodetic coordinate, respectively. 

 
Figure 4. The curve ofα changing with altitude under  

geodetic coordinate 

Thus, (16)can be expressed as 

( ) 2, 3.29 1UDRE SSDOPV f Vλ ϕ σ= +i
            (18) 

From the equation, a linear trend is showed, or put it 
another way, the more SSDOP decreases, the smaller 
UDRE will become.  

III. PPSO ALGORITHM 

A. StationDistribution Using PSO 
The PSO technique proposed by Eberhart and 

Kennedy [7] has been widely used in finding solutions for 
optimization problems. A swarm maintains several 
particles (each represents a solution) and simulates the 
behavior of bird flocking to find the final solutions. Each 

particle has a position vector ( ( )iX t ), a velocity vector 

( ( )iV t ), the position at which the best fitness encountered 

by the particle ( ilBest ), and the position of the best 
particle in the swarm (gBest). 

In each iteration, the velocity of each particle is 
updated to their best encountered position and the best 
position encountered by any particle using the equation 
followed. 

1 1

2 2

( ) ( 1) ( ) ( ( 1))

( ) ( ( 1))
i i i i

i

V t V t c r t lBest X t
c r t gBest X t
ω= ⋅ − + × × − − +

× × − − (19) 

where ( )iV t is the velocity vector of the
thi particle at 

the
tht iteration; ω is called inertia weight; 1c and 2c are the 

acceleration coefficients called cognitive and social 

parameter respectively; 1( )r t and 2 ( )r t are random values, 
uniformly distributed between zero and one. The value of 

1( )r t and 2 ( )r t is not the same for every iteration. 
The position of each particle updates in every 

iteration. This is done by adding the velocity vector to the 
position vector, as below: 

 ( ) ( 1) ( )i i iX t X t V t= − +       (20) 
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where ( )iX t is the position vector of the
thi particle at 

the
tht iteration. 

Shi and Eberhart [8] have found a significant 
improvement in the performance of PSO with the linearly 
decreasing inertia weight over the iterations, time-varying 
inertia weight which is given in (21). 

0.4 0.5
MaxIteration t

MaxIteration
ω −⎛ ⎞= + ⎜ ⎟

⎝ ⎠           (21) 

Then, Ratnaweera and Halgamuge [9] introduced a 
time-varying acceleration coefficient, which reduced the 

cognitive component, 1c , from 2.5 to 0.5 and increased 

the social component, 2c , form 0.5 to 2.5. This method is 
given as follows: 

1 0.5 2
MaxIteration tc

MaxIteration
−⎛ ⎞= + ⎜ ⎟

⎝ ⎠           (22) 

2 2.5 2
MaxIteration tc

MaxIteration
−⎛ ⎞= − ⎜ ⎟

⎝ ⎠          (23) 

Using PSO to optimize reference stations distribution, 
the most important thing is to choose fitness function. 
UDRE is affected by the distribution of reference 
stations, so the average UDRE value of satellites will be 
the best candidate. If average UDRE is chosen, satellite 
ephemeris and clock corrections and variances need to be 
calculated in each iteration. It will seriously affect the 
searching speed. According to earlier analysis, SSDOP 
and UDRE have the linear trend, and the calculation of 
SSDOP is much easier than UDRE, which only needs the 
unite vectors from the reference stations to the satellite. 
Thus, the average SSDOP of satellites is chosen as the 
fitness function in the PSO [10]. The expression of fitness 
function is as follow: 

 1

1
( )

j

K

i SSDOP
j

f X V
K =

= ∑
     (24) 

where K is the number of satellites, and jSSDOPV
is the 

SSDOP of the 
thj satellite. 

The proposed PSO algorithm for distribution of 
reference stations is as below: 

1) Set the maximum iterations as MaxIteration; 
randomly generate a group of particles and an initial 
velocity for every particle, each particle represents a 
distribution of reference stations. (Location of station 
may be two dimensional or three dimensional, according 
to the problem to be solved.) 

2) Calculate fitness value of each particle using (24). 

3) Set current particle as the new lBest if the fitness 
value of the current particle is smaller than the lBest’s 
fitness value, and set the minimum value among all lBests 
and gBest as gBest. 

4) Update the velocity and position of each particle 
using lBest and gBest by (19), (20), (21) ,(22) and (23). 

5) Repeat Step 2 to 4 until the termination condition 
is met. 

If the difference between the gBest and the last gBest 
is less than 0.001, the termination condition is met. When 
the termination condition is achieved, the final gBest is 
the best distribution of reference stations. 

B. Station Distribution Using PPSO 
There is a shortcoming of the proposed PSO 

algorithm for the reference station distribution. 
Sometimes, the proposed algorithm may converge too 
fast which makes the optimizing result to become the 
local optimization. Through 1000 runs Monte-Carlo 
simulation results, the probability of the proposed PSO 
algorithm falling in local optimization is 19% which is 
quite big. 

In order to solve this problem, parallel computing is 
necessary. Parallel computing is a form of computation in 
which many calculations are carried out simultaneously, 
[11] operating on the principle that large problems can 
often be divided into smaller ones, which are then solved 
concurrently ("in parallel"). There are several different 
forms of parallel computing: bit-level, instruction level, 
data, and task parallelism. Parallelism has been employed 
for many years, mainly in high-performance computing. 
As power consumption (and consequently heat generation) 
by computers has become a concern in recent years, 
parallel computing has become the dominant paradigm in 
computer architecture, mainly in the form of multi-core 
processors. [12] 

Parallel computers can be roughly classified 
according to the level at which the hardware supports 
parallelism—with multi-core and multi-processor 
computers having multiple processing elements within a 
single machine, while clusters and grids use multiple 
computers to work on the same task. Specialized parallel 
computer architectures are sometimes used alongside 
traditional processors, for accelerating specific tasks. 

Here, the proposed PSO algorithm for optimizing 
distribution of reference stations is treated as task 
parallelism with multi-core and multi-processor 
computers, and the probability of all the parallel tasks fall 
in local optimization is quite low (0.02476% with five 
parallel tasks). Thus, parallel computing with several 
PSO algorithms will deduce the probability of the 
appearance of local optimization which happens easily 
when the proposed PSO algorithm is used. 

The flow chart of PPSO for optimizing reference 
stations distribution is shown in Figure 4.  

When all the threads are finished, the final gBest is 
the best distribution of reference stations. 

IV. SIMULATION RESULTS 

Experiments are made to compare the performance of 
the proposed PSO algorithm, the proposed PPSO 
algorithm, “N-Angled” method (NA) [4] and Exhaustive 
Grid Search method (EGS) by using MATLAB® with a 
multi-processor computer. 
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Figure 4. The flow chart of PPSO 

A. Compare the Performance of PSO, NA and EGS 
Using NA, there is a need to choose a stationary 

satellite. The best distribution of N reference stations is 
putting the N reference stations on the vertex of the 
polygon beneath the satellite. In the experiment, a GEO 
70E is chosen. The optimal solution of four reference 
stations is shown in Fig.5. 

From Fig.5, when a GEO is chosen and a searching 
area is regular, the performance of the three methods is 
the same. Analyzing the NA method, it is found that this 
method is not suitable for optimizing stations distribution 
when moveable satellites and irregular area are 
considered. 

 

Figure 5. Performance of PSO, NA and EGS 

Table I and Fig. 6 give the comparisons of PSO and 
EGS performance searching for the optimal solution of 4 
reference stations in mainland of China with two dozens 
of movable satellites. The execution time of the algorithm 
is influenced not only by the capability of the algorithm 
but also by the hardware of the computer. Thus, the 
hardware of the computer used in the experiments are 
Intel Pentium Dual CPU 2.00GHz and memory bank 
2.00GB. 

TABLE I.   
FITNESS VALUE AND EXECUTION TIME OF PSO AND EGS 

 Fitness Value Execution Time 

PSO 347.80 99.20s 

EGS stepped by 
4-degree 

387.39 6071.96s 

EGS stepped by 
5-degree 

431.80 966.48s 

 

Specifically, in Table I, the execution time of EGS 
stepped by 4-degree, the slowest, is 6071.96 seconds, and 
the fitness value also is not the best; the execution time of 
EGS stepped by 5-degree, 966.48 seconds, is much less 
than that of EGS stepped by 4-degree, its fitness value, 
however, is the worst. The reason for this is that EGS’s 
performance depends on the grid division step of the 
service area. The smaller step becomes, the better 
performance will be. But the computation time will 
increase exponentially. Finally, it is becoming a NP-hard 
problem. On the other hand, not only is the fitness value 
of PSO smaller than the EGS, but also the execution time 
is 1/60 times that of EGS stepped by 4-degree.  
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Figure 6. Performance of PSO and EGS in mainland of China 

In the Fig. 6, the stations found by PSO are all on the 
border, but those found by EGS are just near the border. 
That’s because EGS is dependent on the grid division and 
can’t scout the entire solution space exhaustively. 
However, PSO searches the solution space dynamically. 
Therefore, the distribution of reference stations found by 
PSO is better than that found by EGS. 

B. Compare the Performance of PPSO and PSO 
Due to parallel computing programs are more difficult 

to write than sequential ones, Parallel Computing 
Toolbox™ which is an easy use toolbox in MATLAB® is 
used to simulate PPSO with five parallel tasks.  

The simulation results are shown in Table II and Fig. 
7. Comparing the performance of the PPSO and PSO 
algorithm which is given in Fig. 7, the result found by 
PSO falling in local optimization is not as good as 
expected. This distribution will have worse influence on 
the geometry of the satellite when the satellite is on the 
east of China. Thus, it will affect the quality of UDRE 
estimation. The optimization distribution found by PSO 
and PPSO are quite similar. Due to the PPSO algorithm is 
based on PSO and the PSO algorithm is optimizing result 
in the solution space dynamically, the results found by 
PPSO and PSO are not the same. 

In Table II, the PSO (local optimization) converging 
too fast has the smallest execution time, 58.56 seconds, 
and its fitness value is twice that of PPSO. This means 
that the UDRE calculated using the reference station 
found by PSO falling in local optimization will be twice 
that of PPSO. If this conservative UDRE is used by the 
users in the service volume will reduce the availability of 
SBAS and safety of the users. The fitness value of PPSO 
is the best, 337.53, and its execution time is bearable, 1.5 
times that of PSO. The most important thing is that the 
proposed PPSO algorithm can avoid converging too fast 
(as mentioned above, the probability of PPSO falling in 
local optimization with five parallel tasks is 0.02476%) 
which can be met by PSO. 

 

TABLE II.   
FITNESS VALUE AND EXECUTION TIME OF PPSO AND PSO 

 Fitness Value Execution Time 

PPSO 337.53 141.19s 

PSO (Local 
optimization) 

694.71 58.56s 

PSO 347.80 99.20s 

 
Figure 7. Performance of PPSO and PSO in mainland of China 

V. CONCLUSIONS 

By analyzing the expressions of SSDOP and UDRE, a 
linear trend is found. The proposed PSO algorithm uses 
average SSDOP as the fitness function to find optimal 
reference stations distribution in searching area, but this 
method, sometimes, may fall in local optimization. Thus, 
a PPSO algorithm is proposed to solve this problem. 
Then, Experiments are made to compare the performance 
of the proposed PPSO algorithm, the proposed PSO 
algorithm, NA and EGS. After analyzing the results, it is 
found that the proposed PPSO algorithm outperforms the 
other methods, and isn’t restricted by the state and 
number of the satellites and the outline of the searching 
area. The most important thing is that the proposed PPSO 
algorithm can avoid falling in local optimization.So, the 
proposed PPSO algorithm can help find good reference 
stations distribution in SBAS, and increase the accuracy 
of UDRE , enhance the availability of SBAS and enhance 
the integrity and safety of flight. 
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