Control Study of Precision Giant Magnetostrictive Actuator Based on Active Disturbance Rejection Control Technology

Meng Wu
School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China
Email: wu_meng@126.com

Hui Zheng
School of Computer Science, BeiHua University, Jilin, China
Email: Zhhui108@163.com

Zhongcheng Fan
School of Computer Science, BeiHua University, Jilin, China
Email: fanconnie@126.com

Abstract—Introduce the structure and working principle of precision giant magnetostrictive actuator and establish the actuator system object transfer function model so as to design a suitable active disturbance rejection controller (ADRC). According to the model analysis, regard the actuator system as a first-order inertia object with dead time to construct second-order ADRC, use MATLAB for parameter tuning and put the parameters into the controller to conduct simulation experiment on the actuator system objects. Simulation results show that the ADRC constructed has good control effect and strong anti-jamming ability and the parameters have strong robustness.

Index Terms—giant magnetostrictive material, actuator, ADRC, parameter tuning, simulation

I. INTRODUCTION

Giant magnetostrictive material (GMM) is a new functional material with magnetostrictive effect, able to realize electric-magnetic-mechanical energy conversion and provided with sensing and actuating functions. It has piezomagnetic effect (i.e., inverse magnetostrictive effect), that is, the material magnetization state changes in the external force, so it may be made into a variety of sensors. Actuation means that GMM changes in size in the magnetic field to convert magnetic energy into mechanical motion. Compared with traditional magnetostrictive materials and piezoelectric ceramics, GMM has better performance and is characterized by large strain capacity, fast response, large output force and easy control. Micro-displacement actuator designed and developed by using GMM has such advantages as high resolution (in micron), fast response (in microsecond), large output force, small size, low driving voltage, seamless transmission and simple control system, etc. Precision giant magnetostrictive actuator (GMA) is a device with actuation property developed by using GMM [1-13].

Precision giant magnetostrictive actuator makes use of the elongation/shortening response of GMM according to the size of the ambient magnetic field and the magnetic field control is usually achieved by the change in the drive coil current, so the performance of the drive system directly determines the actuation accuracy of the precision giant magnetostrictive actuator [14-15]. In order to improve the output accuracy of precision giant magnetostrictive actuator, domestic and foreign researchers use appropriate control algorithms in the closed-loop control of the drive system to expect that the size of the given value can be well reflected by the output value. Control algorithms should be generally selected to meet the needs of fast response, high precision and good stability of GMA. In addition, since precision giant magnetostrictive actuator is subject to a variety of interference factors from the environment in the application process, the output accuracy of GMA will be inevitably affected to some extent. The ADRC control algorithm is evolved from the nonlinear PID control algorithm. It not only inherits the advantages of the PID control algorithm such as simple, easy to implement and good robustness, but also overcomes the shortcomings such as unreasonable method to select errors, no error differential extraction method, undesirable mode of combination and the many side effects of integral feedback. It takes the effects of the system model as the internal disturbance and it together with the external disturbance of the system as the total disturbance so as to compensate the total disturbance, so it is a control algorithm with strong anti-interference ability and good
robustness [16-20]. In combination with the driving principle and characteristics of GMA, this paper establishes a mathematical model of the GMA system and introduces ADRC in the process of automatic control to further improve the performance of the GMA control system.

II. WORKING PRINCIPLE OF GMA
Use domestic GMM rod (φ8×35) as the core to construct the precision giant magnetostrictive actuator as shown in Fig. 1. The actuator consists of giant magnetostrictive rod, preload spring, offset coil, drive coil and tighten screw, etc. The tighten screw and preload spring prestress the giant magnetostrictive rod to make its magnetic domain arranged as far as possible vertically along the axis in zero magnetic field in order to obtain the maximum magnetostriction in the magnetic field. The offset coil provides the bias magnetic field to make the work of giant magnetostrictive materials in its linear region, reduce the response insensitive zone and avoid frequency doubling. When a current passes through the drive coil, a driving magnetic field is generated and the giant magnetostrictive rod generates axial deformation under the action of the driving magnetic field to drive the output rod to move.

III. GMA MODELING
The GMA control system consists of GMA, drive power and controller, etc., as shown in Fig. 2. The actuator precision is affected by both the mechanical structure design and the performance of the drive power and drive system.

The displacement response of the GMA system includes the response characteristics of the drive power and GMA. Set the transfer function of the NC constant-current source is \(G_c(s) \) and the transfer function of GMA is \(G_t(s) \), then the transfer function of the control object \(G(s) \) is:

\[
G(s) = G_t(s) \cdot G_c(s) \quad (1)
\]

According to the step response of the NC constant-current source, it may be approximately regarded as a first-order inertia object with dead time and its transfer function \(G_t(s) \) is expressed as:

\[
G_t(s) = \frac{K_i}{T_i s + 1} e^{-\tau_i s} \quad (2)
\]

The analysis on the NC constant-current source characteristics shows that \(T_i = 0.03528s, \quad \tau_i = 0.00915s \) and \(K_i = \frac{dI}{du} = 2A \). In the formula, \(du \) is power input digital variation; \(dI \) is power output current variation; \(du \) is from 0 to 4000 as drive power is from 0 to 2A.

Fig. 3 is the simulation curve of displacement step response when the digital input of the NC constant-current source is 4000.

In the work process, GMA always generates magnetostriction when one end is clamped or fixed and only moves along the axial direction [21-27]. So the actuator dynamic model as shown in Fig. 4 may be established.

It is set that \(L, A, \rho \) and \(C_D \) respectively represents the length, cross-sectional area, mass density and internal damping coefficient of the GMM rod; \(K_r, C_r, M_r \) respectively represents the equivalent stiffness coefficient, equivalent damping coefficient and equivalent mass of the GMM rod; \(K_i, C_i \) and \(M_i \) respectively represents the equivalent stiffness coefficient, equivalent damping coefficient and equivalent mass of the loads (including spring, ejector and mass loads); \(F_r, Y \) and \(\sigma \) respectively represents the output force, displacement and prestress of the GMM rod and \(F_r \) represents the reaction force of the loads on the GMM rod.

Under the action of the driving magnetic field and pre-pressure, the GMA output displacement is derived as [28-29]:

![Figure 1. Theory Diagram of Giant Magnetostrictive Accurate-motion Actuator](image1)

![Figure 2. Block Diagram of GMA Control System](image2)

![Figure 3. Step Response of NC Constant-current Source](image3)

![Figure 4. Actuator Dynamic Model](image4)
In the formula, \(H = N_{1} \), \(K_{2} = \pi r^{2} d_{3} N_{1} L \), \(r \) represents the radius of the GMM rod, \(N_{1} \) represents the turns of the drive coil, \(S_{1} \), \(d_{3} \) and \(H \) respectively represent compliance coefficient, piezomagnetic coefficient and magnetic field intensity when the magnetic field is a constant; \(M_{1} = \rho L A_{1}/3 \), \(C_{r} = C_{D} A_{1}/L \), \(K_{r} = A_{1}/L \), \(L \), \(A_{1} \), \(\rho \) and \(C_{D} \) respectively represent the length, cross-sectional area, mass density and internal damping coefficient of the GMM rod; \(K_{r} \), \(C_{r} \) and \(M_{1} \) respectively represent the equivalent stiffness coefficient, equivalent damping coefficient and equivalent mass of the GMM rod; \(K_{r} \), \(C_{r} \) and \(M_{r} \) respectively represent the equivalent stiffness coefficient, equivalent damping coefficient and equivalent mass of the load.

Transfer function of the GMA is:

\[
G_{y}(s) = \frac{y(s)}{L(s)} = \frac{K_{2}}{(M_{1} + M_{r}) s^{2} + (C_{r} + C_{1}) s + (K_{r} + K_{1})} \tag{4}
\]

In actual calculation, the static gain \(K_{2} \) can be derived using the following formula:

\[
K_{2} = (K_{r} + K_{1}) \frac{d_{3} y}{d t} \tag{5}
\]

In the formula, when the current variation is \(dI = 2A \), the displacement variation is \(dy = 20.12\mu m \).

Take the characteristic parameter values of the GMM rod as \(\rho = 9250\ kg/m^{3} \), \(C_{D} = 3 \times 10^{4}\ Ns/m^{2} \), \(C_{r} = C_{D} A_{1}/L = 4306\ Ns/m \), \(C_{1} = 1 \times 10^{8}\ Ns/m \), \(M_{1} = \rho L A_{1}/3 = 0.005kg \), \(M_{r} = 0.5kg \), \(S_{1} = 1.5 \times 10^{-11}\ m^{2}/N \), \(d_{3} = \frac{\partial d}{\partial H} = 1 \times 10^{-4}\ m/A \), \(N = 920 \), \(K_{r} = \frac{A_{1}}{LS_{1}^{1/2}} = 9.6 \times 10^{7}\ N/m \) and \(K_{1} = 2 \times 10^{6}\ N/m \).

Put the formulas into the formulas (4) and (5), the transfer function of the GMA is derived as:

\[
G_{y}(s) = \frac{1.94 \times 10^{7}}{s^{3} + 1.05 \times 10^{4} s + 1.94 \times 10^{9}} \tag{6}
\]

Fig. 5 is the simulation curve of unit step response of the GMA model. It can be seen from the figure that the overshoot of the result curve is large (about 27.78%), the rise time is very short (about 0.14ms) and the settling time is about 1ms.

Put the formulas (2) and (4) into the formula (1), we get that

\[
G(s) = \frac{K_{r} - K_{1}}{(I_{0} s + 1) [(M_{1} + M_{r}) s^{2} + (C_{r} + C_{1}) s + (K_{r} + K_{1})] e^{-s \tau}} = \frac{0.0005 \times 1.94 \times 10^{3}}{(0.03528 s + 1)(0.03528 s + 1.05 \times 10^{4})} \tag{7}
\]

Fig. 6 is the simulation curve of displacement step response when the GMA system digital input is 4000. The curve shows that the GMA system is a first-order inertia object with dead time and its response characteristics are mainly determined by the NC constant-current source. According to this feature, an inertia object with dead time may be used to represent the GMA system (see Formula (8)) and it is consistent with the response characteristics of the GMA system.

\[
G(s) = \frac{y(s)}{u(s)} = \frac{0.005}{0.3528 s + 1} e^{-0.0015 s} \tag{8}
\]

IV. CONSTRUCTION OF GMA ADRC

A second-order ADRC is constructed in combination with the object properties and active disturbance rejection control technology, with structure as shown in Fig. 5. In the figure, TD is a differential tracker used to arrange the transient process \(V' \) and give the differential \(V_{2} \); NLSEF is a nonlinear controller, which is nonlinear control strategy of the error between the transient process arranged and the object state variable and used to conduct nonlinear combination on the error \(e_{1} \) and differential \(e_{2} \) and output control signal ; ESO is an extended state observer used to track the object displacement output \(y \) and estimate the object state variables of each order \(Z \) and \(Z_{2} \) and the real-time action of the object.
total disturbance Z_3; G is the controlled object; b is the amplification factor of control input required to achieve active disturbance rejection control [16-20]. The corresponding equations are as follows:

\[
\begin{align*}
\dot{V}_1 &= V_2 \\
\dot{V}_2 &= (4V_0 / T_c^2) \text{sign}(T_c / 2 - t), \ t \leq T_c \\
\dot{V}_2 &= V_0, \quad t > T_c \\
\dot{e}_1 &= Z_1 - y \\
\dot{Z}_2 &= Z_1 - \beta_1 e_1 \\
\dot{Z}_2 &= Z_1 - \beta_2 \text{fal}(e_1, \alpha_1, \delta_1) + bu \\
\dot{e}_2 &= V_1 - Z_1 \\
\dot{e}_2 &= V_2 - Z_2 \\
u &= u_0 - Z_1 / b = \beta_3 \text{fal}(e_2, \alpha_2, \delta_2) - Z_2 / b \\
fal(e, \alpha, \delta) &= \begin{cases}
\frac{\text{sign}(e)}{e / \delta}, & |e| > \delta \\
1, & |e| \leq \delta
\end{cases}
\end{align*}
\]

In the formulas, V_1 is a given value; u is the control quantity; y is the object output; Z_1, Z_2 and Z_3 are the output of ESO, Z_1 and Z_2 can track the object state variables and Z_3 estimates the total action of the object disturbance; e_1 is the observation error of the state observer; T_c is the time of the transient process arranged; β_1, β_2, β_3, β_4 are correction factors. Function $\text{fal}(e, \alpha, \delta)$ is the output error correction rate, e is the error, α is the index and δ is the limit of error.

V. CONTROL OF GMA ADRC

A. PID Control Simulation of Actuator System

Fig. 8 shows the PID simulation curve of the object as shown in Formula (8). It can be seen from Fig. 8 that the overshoot of the PID control curve is about 53% and the settling time is relatively long at about 370ms.

B. Actuator System Parameter Tuning and Simulation

It can be seen from the ADRC equations of the actuator that T_c, β_0, β_2, β_3, β_4, β_5, β_6, a_0, a_2, α_1, α_2, α_3, δ_1, δ_2, b and h_0 are the parameters to be tuned in the equation, in which h_0 is the integration step for the discretization of the equation, i.e., sampling time.

The time constant and dead time of the actuator system objects are relatively small and it is difficult to determine the search range of the parameter tuning. Therefore, we can first select a regular first-order inertia object with dead time as the reference object, use MATLAB software to conduct ADRC parameter tuning and then use parameter transformation to transform into the actuator system ADRC parameters [30].

The reference object model is set as:

\[
G_f(s) = \frac{K_g}{T_s^4 + 1} e^{-\alpha s} = \frac{1}{20s + 1} e^{-0.05s}
\]

The parameters to be tuned of $G_f(s)$ are set as T_s, $\tilde{\beta}_0$, $\tilde{\beta}_1$, $\tilde{\beta}_2$, $\tilde{\beta}_3$, $\tilde{\beta}_4$, α_0, α_2, α_3, δ_0, δ_1, δ_2 and h_0. The transient time is set as $T_s = 3.5(T_4 + \tau_4) = 87.5x$ s, and the MATLAB simulation software is used to tune the ADRC parameters of the reference object. Fig. 9 is the tuning diagram of the ADRC parameter $\tilde{\beta}_0$ of the reference object. Here, it is preset that $\alpha_0 = 1$, $\alpha_2 = 0.5$, $\alpha_3 = 0.2$, $\alpha_3 = 1$, $\delta_0 = 0.1$, $\delta_1 = 0.1$, $\delta_2 = 0.1$, $\tilde{\beta} = K_s/T_s = 0.05$ and $h_0 = 1$. The assigned values of $\tilde{\beta}_0$, $\tilde{\beta}_1$, $\tilde{\beta}_2$ and $\tilde{\beta}_3$ are adjusted through software. It can be seen from Fig. 5.22 that $\tilde{\beta}_3$ changes within the interval of $[0, 0.054]$ and there are 11 curves drawn in total. When $0 \leq \tilde{\beta}_3 < 0.005$, the curves of measurements and given values have large deviation; when $\tilde{\beta}_3 > 0.052$, the measurement curve diverges; when $0.005 \leq \tilde{\beta}_3 \leq 0.052$, the measurement curve is in good agreement with the given curve, i.e., the ADRC requirements can be met when $\tilde{\beta}_3$ selects any value within the range and the selection of parameters has good robustness. When $\tilde{\beta}_3 = 0.02$, the ADRC effect is especially good. So it is selected that $\tilde{\beta}_3 = 0.02$.

![Figure 8. PID Simulation Curve of Actuator System](image-url)
After $\tilde{\beta}_{03}$ is selected, $\tilde{\beta}_{01}$, $\tilde{\beta}_{02}$, $\tilde{\beta}$, and $\tilde{\beta}$ may be tuned similarly. The parameters finally tuned are shown in Table I.

Table I.

<table>
<thead>
<tr>
<th>ADRC Tuned Parameters of the Reference Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_c</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>276.2</td>
</tr>
<tr>
<td>α_1</td>
</tr>
<tr>
<td>20.54</td>
</tr>
<tr>
<td>δ_0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

Put the parameters in Table I into the ADRC equations and the results of control simulation on the reference object are shown in Fig. 10. It can be seen from the figure that the curve of given values, indicating that the parameters tuned in this group are correct.

![Figure 10. ADRC Simulation Curve of the Reference Object](image)

Through calculation, the time constant ratio of the two objects is $m = T_2 / T_1 = 0.001764$ and the static magnification ratio is $n = K_1 / K_4 = 0.005$. The parameter tuning method is concluded according to parameter transformation, namely, the parameters (T_c, β_{01}, β_{02}, β_{03}, β, α_1, α_2, α_3, α_4, δ_0, δ_1, δ_2, b and h_0) of the actuator system $G_d(s)(T_1, K_1, T_1)$ are $(mT_c, \tilde{\beta}_{01}/m$, $\tilde{\beta}_{02}/m$, $\tilde{\beta}/m^2$, $\tilde{\beta}_{03}/m^3$, $\tilde{\beta}/n$, $m^2\tilde{\beta}/n$, α_1, α_2, α_3, α_4, δ_0, δ_1, δ_2/m, nb/m^2 and $m\delta_0$). By respectively putting the values of m and n into the corresponding relationship between the parameters, the ADRC parameters of the actuator system as shown in Table 2 may be obtained.

Table II.

<table>
<thead>
<tr>
<th>Parameter Values of Actuator System ADRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_c</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0.15435</td>
</tr>
<tr>
<td>α_1</td>
</tr>
<tr>
<td>10.584</td>
</tr>
<tr>
<td>δ_0</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

Put the parameters in Table II into the ADRC equations and the results of control simulation on the actuator system are shown in Fig. 11. It can be seen from Fig. 11 that the measurements are in good consistency with the given values, the overshoot is very small and the control effect is the same as that of the reference object and much better than the traditional PID control, indicating the correctness and effectiveness to use the parameter transformation method for parameter tuning; the simulation program also develops the ADRC simulation curve as β_{03} of the actuator system object changes with β_{03} of the reference object as shown in Fig. 12 which is consistent with the ADRC control trend of the reference object; when the parameters tuned change in a certain interval, the control effect will not be affected; in the practical application of ADRC after parameter tuning, for the objects with parameters (T, K, τ) changing within a certain range, the control effect is the same, which indicates that ADRC has strong robustness.

![Figure 11. Simulation Curve of Actuator System ADRC](image)

C. Anti-disturbance Analysis of Actuator System ADRC

ADRC is equipped with built-in anti-disturbance feedback loop, so it is relatively easy to realize the anti-disturbance properties better than other traditional controllers. System disturbance mainly includes feeding disturbance and load disturbance with feeding disturbance applied to the front and load disturbance directly applied onto the output of the control objects. Load disturbance is more difficult to control due to its...
position of application. In the simulation experiment, sinusoidal disturbance signals with different amplitude (5%, 10%, 20% and 100% of the steady-state value respectively) are applied onto the output of the objects with software (see Fig. 13, 14, 15 and 16 for ADRC simulation curves).

Figure 13. Simulation Curve of ADRC with Disturbance Amplitude at 5% of Steady-state Value

Figure 14. Simulation Curve of ADRC with Disturbance Amplitude at 10% of Steady-state Value

Figure 15. Simulation Curve of ADRC with Disturbance Amplitude at 20% of Steady-state Value

Figure 16. Simulation Curve of ADRC with Disturbance Amplitude at 100% of Steady-state Value

D. ADRC Program Design

The ADRC program flow is shown in Fig. 17. The amount of drive control may be given through arithmetic operations when only two port parameters, i.e., given target value and measured value, are provided to the controller software.

VI. CONCLUSIONS

1. The GMA system control object is a first-order inertia object with dead time;
2. The ADRC simulation results show that the curves of measurements and given values are almost coincident and ADRC using tuning parameters has sound control effect;
3. After parameter tuning, the system has a strong robustness, i.e., in a certain range, parameter variation has little effect on the stability of the system;
4. It is observed from the four simulation curves that, when the disturbance amplitude is below 10% of the steady-state value, the measured curves vary slightly only when the disturbance just intervenes, but are immediately compensated by the ADRC loop, and the measurements remain consistent with the given values. With increasing disturbance amplitude, when the amplitude is higher than 20% of the steady-state value, the measured curves will fluctuate, but it still can be seen that the ADRC compensation effect is very obvious. By further parameter tuning, the inhibitory effect of ADRC on such disturbances will be made better.

REFERENCES

He has been a lecturer in JILIn Institute of Chemical Technology since 1995. Until now, he has published six articles as the first author, which include: Design and Study on Power Supply for Giant Magnetostrictive Accurate-motion Actuator. Key Engineering Materials, 2009, 392-394: 787-792; New type of actuate-motion mechanism with giantmagnetostrictive and piezoelectric drive. Journal of HARRIN Institute of Technology, 2009, 41(1):149-151; A Study on Parameters Setting Methods for Active Disturbance Rejection Controller(ADRC), Transactions of Beijing Institute of Technology, 2009, 168(29):121-123. At present, he is mainly responsible for measuring and controlling work.

Dr. Meng Wu is a member of Academic Conference of China University Society on Manufacturing Automation.

Hui Zheng born in Jilin, China in 1972, postgraduate of Jilin University, associate professor of Beihua University, mainly engaged in database research.

Zhongcheng Fan born in Jilin, China in 1975, postgraduate of Changchun University of Technology, lecturer of Beihua University, mainly engaged in embedded systems research.