Journal of Advances in Information Technology, Vol 2, No 4 (2011), 239-249, Nov 2011
doi:10.4304/jait.2.4.239-249

Inferring Asymmetry of Inhabitant Flow using Call Detail Records

Santi Phithakkitnukoon, Carlo Ratti

Abstract


In this research, we carry out a study of the inhabitant flow using a large mobile phone data with location estimates from subscribers in Suffolk county, Massachusetts, USA that reveals the asymmetry in the flows, which reflects the way that people travel daily. People occasionally travel in a non-symmetrical way. For instance, they would take one route traveling from home to a destination and a different route while returning home. By analyzing the flow over the space, the results show that there exists asymmetrical flows, which account for 33% of all inhabitant flows. In addition, high asymmetrical flows are observed in trips between low and high congested areas e.g. urban and suburban areas, as well as trips made to and from low populated areas e.g. ommercial areas.



Keywords


Inhabitant flow, mobile phone data mining, urban computing

References


T. Abrahamsson. Estimation of origin-destination matrices using traffic counts – a literature survey. Interim Report, IR-98-021/May, International Institute for Applied Systems Analsyis, 1998. A. K. Agrawal, D. Mohan, and R. S. Singh. Traffic planning in a constrained network using entropy maximisation approach. Journal of the Institution of Engineers. India. Civil Engineering Division, 85:236–240.

Airsage. Airsage wise technology. http://www.airsage.com.

T. S. Azevedo, R. L. Bezerra, C. A. V. Campos, and L. F. M. de Moraes. An analysis of human mobility using real traces. In WCNC’09: Proceedings of the 2009 IEEE conference on Wireless Communications & Networking Conference, pages 2390–2395, Piscataway, NJ, USA, 2009. IEEE Press.

A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex weighted networks. In Proc. Nat. Acad. Sci. 101, pages 37–47, 2004.
http://dx.doi.org/10.1073/pnas.0400087101
PMid:15007165    PMCid:374315

M. Bell. Log-linear models for the estimation of origindestination matrices from traffic counts. In Proc. of the Ninth International Symposium on Transportation and Traffic Theory, 1984.

P. Bovy and E. Stern. Route choice: Wayfinding in transport networks. Kluwer Academic Publishers, 1990. F. Calabrese, F. C. Pereira, G. D. Lorenzo, and L. Liu. The geography of taste: analyzing cell-phone mobility and social events. In Proceedings of IEEE Inter. Conf. on Pervasive Computing (PerComp), 2010.

J. Candia, M. C. Gonzalez, P. Wang, T. Schoenharl, G. Madey, and A. Barabasi. Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical, 41(22):1–16, 2008.
http://dx.doi.org/10.1088/1751-8113/41/22/224015

R. Conroy Dalton. The secret is to follow your nose: Route path selection and angularity. Environment and Behavior, 35:107–131, 2003.
http://dx.doi.org/10.1177/0013916502238867

R. Dial. A probabilistic multipath traffic assignment algorithm which obviates path enumeration. Transportation Research, 5(2):83–111, 1971.
http://dx.doi.org/10.1016/0041-1647(71)90012-8

M. Duckham and L. Kulik. Simplest paths: Automated route selection for navigation. In COSIT 2003, Lecture Notes in Computer Science, volume 2825, pages 169–185, 2003.
http://dx.doi.org/10.1007/978-3-540-39923-0_12

N. Eagle and A. Pentland. Reality mining: sensing complex social systems. Personal and Ubiquitous Computing, 10(4):255–268, May 2006.
http://dx.doi.org/10.1007/s00779-005-0046-3

P. Gipps. Simulation of pedestrian traffic in buildings. Schriftenreihe des Instituts fuer Verkehrswesen, University of Karlsruhe, 1986.

R. G. Golledge. Path selection and route preference in human navigation: A progress report. Transportation Research, B 38:169–190, 2004.

M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual human mobility patterns. Nature, 453(7196):779–782, June 2008.
http://dx.doi.org/10.1038/nature06958
PMid:18528393

Y. Guy. Pedestrian route choice in central jerusalem. department of geography. Ben-Gurion University of The Negev, Beer Sheva (in Hebrew), 1987. H. Hamacher and S. Tjandra. Mathematical modeling of evacuation problems: A state of the art. In Proceedings of the Pedestrian and Evacuation Dynamics, pages 59–74. Springer, Berlin, 2001. D. Helbing. Traffic dynamics: New physical modeling concepts. Springer-Verlag, Berlin (in German), 1997.

M. Hill. Spatial structure and decision-making of pedestrian route selection through an urban environment. Ph.D. Thesis, University Microfilms International, 1982. B. Hillier and J. Hanson. The Social Logic of Space. Cambridge University Press, Cambridge, 1984.

H. Hochmair and A. U. Frank. Influence of estimation errors on wayfinding decisions in unknown street networks analyzing the least-angle strategy. Spatial Cognition and Computation, 2:283–313, 2002.
http://dx.doi.org/10.1023/A:1015566423907

S. Hoodendoorn and P. Bovy. Pedestrian route-choice and activity scheduling theory and models. In Spatial Information Theory A Theoretical Basis for GISTransportation Research, pages 207–222, 1995.

R. Hughes. A continuum theory for the flow of pedestrians. Transportation Research, B 36(6):507–535, 2002.
http://dx.doi.org/10.1016/S0191-2615(01)00015-7

W. S. Jung, F. Wang, and H. E. Stanley. Gravity model in the korean highway. Europhys. Lett., 81(48005), 2008.

Z. G. K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Reading, MA: Addison-Wesley, 1949.

G. Krings, F. Calabrese, C. Ratti, and V. D. Blondel. Urban gravity: a model for inter-city telecommunication flows. Journal of Statistical Mechanics: Theory and Experiment, pages 1–8, 2009.

K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong. Slaw: A mobility model for human walks. In Proceedings of the 28th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Rio de Janeiro, Brazil, April 2009. IEEE.

N. Limtanakool, M. Dijst, and T. Schwanen. Development of hierarchy in the dutch urban system on the basis of flows. In Colloquium Vervoersplanologisch Speurwerk 2005: Duurzame mobiliteit: hot or not?, pages 21–40, 2005.

N. Limtanakool, M. Dijst, and T. Schwanen. A theoretical framework and methodology for characterising national urban systems on the basis of flows of people: Empirical evidence for france and germany. Urban Studies, 44(11):2123–2145, 2007.
http://dx.doi.org/10.1080/00420980701518990

N. Limtanakool, M. Dijst, and T. Schwanen. Developments in the dutch urban system on the basis of flows. Regional Studies, 42(2):179–196, 2009.
http://dx.doi.org/10.1080/00343400701808832

L. L.J. and F. K. Selection of a trip table which reproduces observed link flows. Transportation Research 16B, 1982.

G. Lovas. Modeling and simulation of pedestrian traffic flow. Transportation Research, B 28(6):429–443, 1994.
http://dx.doi.org/10.1016/0191-2615(94)90013-2

M. Maher. Inferences on trip matrices from observations on link volumes: a bayesian statistical approach. Transportation Research Part B, 17B(6):435–447, 1983.
http://dx.doi.org/10.1016/0191-2615(83)90030-9

S. Nguyen. Estimation of an od matrix from network data: A network equilibrium approach. University of Montreal, Quebec, Canada, (60), 1977.

T. A. S. Nielsena and H. H. Hovgese. Exploratory mapping of commuter flows in england and wales. Journal of Transport Geography, 16(2):90–99, 2008.
http://dx.doi.org/10.1016/j.jtrangeo.2007.04.005

S. Phithakkitnukoon and R. Dantu. UNT mobile phone communication dataset. http://nsl.unt.edu/santi/datadesc.pdf, 2008.

S. Phithakkitnukoon and R. Dantu. Mobile social group sizes and scaling ratio. Springer: AI & Society, 2009.

S. Phithakkitnukoon and R. Dantu. Mobile social closeness and similarity in calling patterns. In IEEE Conference on Consumer Communications & Networking Conference (CCNC 2010)Special Session on Social Networking (Soc- Nets), 2010.

S. Phithakkitnukoon, T. Horanont, G. D. Lorenzo, R. Shibasaki, and C. Ratti. Activity-aware map: Identifying human daily activity pattern using mobile phone data. In Proc. of Inter. Conf. on Pattern Recognition (ICPR 2010), Workshop on Human Behavior Understanding (HBU), 2010. M. Raento. Context project. http://www.cs.helsinki.fi/group/context/data/, 2008. J. Rich, S. L. Mabit, and O. A. Nielsen. Route choice model for copenhagen: A data-driven choice set generation approach based on gps data. In http://transpor2.epfl.ch/tristan/FullPapers/068Rich.pdf.

E. Sadalla, W. Burroughs, and L. Staplin. Reference points in spatial cognition. Journal of ExperimentalPsychology: Human Learning and Memory, 5:516–528, 1980.
http://dx.doi.org/10.1037/0278-7393.6.5.516

P. Senevarante and J. Morall. Analysis of factors affecting the choice of route of pedestrians. Transportation Planning and Technology, 10:147–159, 1986.

Skyhook. Skyhook wireless. http://www.skyhookwireless.com/.

C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi. Limits of predictability in human mobility. Science, 327(5968):1018–1021, 2010.
http://dx.doi.org/10.1126/science.1177170
PMid:20167789

J. Teklenburg, H. Timmermans, and A. Borgers. Changes in urban layout and pedestrian flows. In Proceedings of Seminar A PTRC European Transport Forum, volume P363, pages 97–108, 1993.

A. Turner. Angular analysis. In Proceedings of the 3rd International Symposium on Space Syntax, pages 30.1– 30.11, Georgia Institute of Technology, Atlanta, 2001.

A. Turnerand and N. Dalton. A simplified route choice model using the shortest angular path assumption. In www.geocomputation.org/2005/Turner.pdff.

J. R. van Eck and D. Snellen. Is the randstad a city network? evidence from commuting patterns. In European Transport Conference 2006, 2006.

N. Verlander. Pedestrian route choice: An empirical study. In Proceedings of Senimar F of the PTRC European Transport Forum, volume P415, pages 39–49, 1997.

F. Viti. State-of-art of o-d matrix estimation problems based on traffic counts and its inverse network location problem: perspectives for application and future developments. Working paper, 2008. WebGIS. Geographic information systems resource. http://www.webgis.com/index.html.

H. Yang and J. Zhou. Optimal traffic counting locations for origin-destination matrix estimation. Transportation Research Part B, 32B(2):108–126, 1998.

H. V. Zuylen and L.Willumsen. The most likely trip matrix estimated from traffic counts. Transportation Research 14B, 1980.


Full Text: PDF


Journal of Advances in Information Technology (JAIT, ISSN 1798-2340)

Copyright @ 2006-2014 by ACADEMY PUBLISHER – All rights reserved.